
1,3-Dipolar cycloaddition is an important reaction in hetero-
cyclic chemistry.1 The 1,3-dipolar cycloaddition of azome-
thine ylides to alkynes is, in principle, a useful procedure for
obtaining pyrrole derivatives.2 Because many pyrrolidines and
pyrroles have important pharmacological activity (e.g. as
antivirals, anthelmintics or α-glucosidase inhibitors), their
synthesis has attracted much attention.3–5 Here we report the
1,3-dipolar cycloaddition of ethyl N-ethoxycarbonylmethyl-
benzimidate (1) with N-arylmaleimides (2) to give pyrrole
derivatives 3, 4, and 5 (Scheme 1).

Azomethine ylides, which were first reported in 1966, are
classified as allyl-type 1,3-dipolar compounds6 and can be
obtained by ring opening of aziridines. There are other 
methods, such as desilylation of α-silyl onium salts,7 1,2-pro-
totropic rearrangement of imines,8 and addition of carbenes or
carbenoids to imines.9 An imino-thioether derived from an α-
amino acid ester is a potential 1,3-dipole, which can undergo
1,2-prototropy to give azomethine ylides which may then
react with N-phenylmaleimide.10 The imidate 1 is a well-
known synthetic intermediate11 and similar to a thioimino
ether of an α-amino acid ester in structure. We supposed that
ethyl N-(ethoxycarbonylmethyl)benzimidate (1) could gener-

ate an azomethine ylide through 1,2-prototropy, and therefore
studied the 1,3-dipolar cycloaddition reaction of the imidate 1
with the maleimide2. 

Refluxing the imidate 1 with N-phenylmaleimide in toluene
or xylene failed to give any cycloadduct, although 1,3-dipolar
cycloaddition of imines has been reported in these 
solvents.8,10 However, when a solution of 1 and 
N-aryl maleimide 2 was refluxed in mesitylene for 10 h,
cycloaddition products were obtained, which included a pair
of pyrrolo[3,4-c]pyrrole isomers (3, 4) and the unexpected 
7-azabicyclo[2.2.1]heptane derivative (5). The formation of
compound 5 can be rationalised via a 1,3-dipolar cycloaddi-
tion of the imidate 1 with two N-aryl maleimides 2. We
observed the epimerisation of the isomers3 and 4 in hot
mesitylene. Although the total yields (59% and 53%) of 
products for both reactions are moderate, the yield of each
individual product is low because the reactivity of 3 (or 4)
with 2 is similar to that of 1 under the experimental 
conditions.

The configuration of the isomers 3 and 4 was confirmed by
comparison of their 1H-NMR coupling constants with those
from compounds 6 and 7,10 as listed in Table 1.
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Scheme 1



Table 1 The comparison of Jb-c

Compound 6 3a 3b 7 4a 4b

Jb-c (Hz) 2.57 2.4 2.4 9.9 9.0 10.2

Experimental

IR spectra were taken on a Shimadzu IR-408 spectrometer. 1H-NMR
spectra were recorded on a JEOL FX-60Q spectrometer and chemical
shifts (δH) were referred to TMS. MS spectra were taken on a VG-
ZAB-HS spectrometer. Elemental analyses were recorded on a
Perkin-Elmer-240C element analyzer. Ethyl N-ethoxycarbonyl-
methylbenzimidate (1) was prepared by a literature method.12

General procedure

A solution of the imidate 1 (2.35 g, 10 mmol) and N-arylmaleimide 2
(20 mmol) in mesitylene (15 ml) was refluxed for 8–10 h. After the
reaction mixture was cooled, the crude compound 5 was obtained by
filtration, and purified by recrystallisation from ethyl acetate. The fil-
trate was evaporated and the residue was purified by column chro-
matography on silica gel (300–400 mesh, eluent: ethyl
acetate/petroleum ether (60–90°C) = 1:5 v/v) to give 3 and 4, which
were recrystallised from dichloromethane/petroleum ether (60–90°C)
for further purification.

Ethyl 1,3a,4,5,6,6a-hexahydro-4,6-dioxo-3,5-diphenylpyrrolo[3,4-
c]pyrrole-1-carboxylate(3a): Yield 17%. M.p.: 70–71°C. IR (KBr,
cm-1): 1735, 1710, 1505, 1385, 1190, 700. 1H-NMR (CDCl3, δ ppm):
1.36 (3H, t, CH3), 4.25 (1H, d, CHa), 4.30 (2H, q, OCH2), 4.90 (1H,
dd, CHb), 5.37(1H, t, CHc), 7.14–8.30 (10H, m, ArH). MS m/z(%):
362 (M+, 100), 289 (85.5), 142 (42.5). Anal. calcd. for C21H18N2O4:
C, 69.60; H, 5.01; N, 7.73. Found: C, 69.60; H, 5.00; N, 7.73.

3b: Yield 16%. M.p.: 168–170°C. IR (KBr, cm-1): 1730, 1705,
1515, 1200, 760. 1H-NMR (CDCl3, δ ppm): 1.36 (3H, t, CH3), 3.80
(3H, s, OCH3), 4.22 (1H, d, CHa), 4.30 (2H, q, OCH2), 4.90 (1H, dd,
CHb), 5.37 (1H, t, CHc), 6.83–8.30 (9H, m, ArH). MS m/z(%): 392
(M+, 67.1), 219 (24.8), 142 (100). Anal. calcd. for C22H20N2O5: C,
67.34; H, 5.14; N, 7.14. Found: C, 67.03; H, 5.01, N, 6.97.

4a: Yield 20%. M.p.: 119–120°C. IR (KBr, cm-1): 1725, 1715,
1510, 1390, 1180, 680. 1H-NMR (CDCl3, δ ppm): 1.30 (3H, t, CH3),

3.94 (1H, d, CHa), 4.25 (2H, q, OCH2), 4.81 (1H, d, CHb), 5.40 (1H,
t, CHc), 7.17-8.30 (10H, m, ArH). MS m/z (%): 362 (M+, 6.5), 289
(11.7), 233 (100). Anal. calcd. for C21H18N2O4: C, 69.60;H, 5.01; N,
7.73. Found: C, 69.68; H, 4.90; N, 7.34.

4b: Yield 19%. M.p.: 95–96°C. IR (KBr, cm-1): 1740, 1715, 1520,
1180, 755. 1H-NMR (CDCl3, δ ppm): 1.30 (3H, t, CH3), 3.97 (3H, s,
OCH3), 4.00 (1H, d, CHa), 4.25 (2H, q, OCH2), 4.81 (1H, dd, CHb),
5.40 (1H, d, CHc), 6.82-8.30 (9H, m, ArH). MS m/z (%): 392 (M+,
62.4), 319 (18.7), 142 (100). Anal. calcd. for C22H20N2O5: C, 67.34;
H 5.14; N, 7.14. Found: C, 66.99; H, 5.22; N, 7.38.

Ethyl dodecahydro-1,3,5,7-tetraoxo-2,6,8-triphenyl-4,8-iminopy-
rrolo[3,4-f]isoindole-4-carboxylate 5a: Yield 22%. M.p.:
312–314°C. IR (KBr, cm-1): 3310, 1720, 1710, 1500, 1390, 1210,
750. 1H-NMR (CDCl3, δ ppm): 1.38 (3H, t, CH3), 3.96 (4H, s,
2CHCH), 4.30 (2H, q, OCH2), 4.62 (1H, s, NH), 7.08–8.00 (15H, m,
ArH). MS m/z (%): 535 (M+, 0.2), 362 (84.4), 316 (100). Anal. calcd.
for C31H25N3O6: C, 69.52; H, 4.71; N, 7.85. Found: C, 68.99; H, 4.74;
N, 7.62.

5b: Yield 18%. M.p.: 300–302°C. IR (KBr, cm-1): 3300, 1720,
1705, 1515, 1200, 780. 1H-NMR (CDCl3, δ ppm): 1.37 (3H, t, CH3),
3.78 (3H, s, OCH3), 3.93 (4H, s, 2CHCH), 4.36 (2H, q, OCH2), 4.67
(1H, s, NH), 6.85-8.00 (13H, m, ArH). MS m/z: 596 (M+H)+. Anal.
calcd. for C33H29N3O8: C, 66.55; H, 4.91; N, 7.06. Found: C, 66.08;
H, 5.34; N, 6.84.
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